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Using the determinental form of the N-V-T and N-P-T partition functions, we derive 
explicit expressions for the N-dependent virial coefficients occurring in the expansions 
of the equations of state in the N-V-T and N-P-T ensembles. The results are presented 
in a matrix algebra formalism. The equation of state of N hard spheres in an N-P-T 
ensemble of systems is analyzed by the method of Pad& Approximants. 

I. INTRODUCTION 

In recent years the development of computer-simulated physical systems has 
created a need for theories to relate the machine-determined properties of these 
finite systems to the properties of similar infinite systems [l, 21. The equation of 
state for a classical fluid whose molecules interact with pairwise additive forces 
has been analyzed by Oppenheim and Mazur [3] and also by Lebowitz and 
Percus [4]. In the latter paper the pressure P(N, V) exerted on the walls of a 
periodic box of volume V by N particles was expressed as a power series in the 
number density p = N/V and the coefficient of pz was found to be a complicated 
function of N and V which could be explicitly determined only in a relatively low 
density region. The general result was that the coefficient of pL (I < N) could be 
expressed as a polynomial of order (I - 1) in l/N, the coefficient of N-j (j < I - 1) 
being a function of the connected cluster integrals bt’ (k < I). For a periodic 
parallelepiped or rectangular box b,’ was an implicit function of V for I > L/a, 
a being the range of the intermolecular forces and L the length of the smallest edge 
of the box. 

In this paper we are mainly concerned with the bl’ for I < L/a so that the 
connected cluster integrals become the volume independent integrals bl . A matrix 
algorithm is developed for generating the N dependent virial coefficients occurring 
in the density expansion of the canonical pressure. A similar analysis is performed 
on the N-P-T equation of state, F/N being the dependent variable and P/k,T the 
independent variable, where k, is Boltzmann’s constant and T is the absolute 
temperature. The N-dependent virial coefficients have a particularly simple form 
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in the N-P-T formalism, that of a polynomial of order 1 in l/N for the Zth coefficient, 
1 < N + 1. In other words, the coefficients are of the form a, + d,/N, I < N + 1, 
where a, , dt are functions of the connected cluster integrals b, . 

We compare the condition I < N to that necessary in the N-V-T ensemble for 
volume-independent virial coefficients, that in the expansion [5] 

P/k,T = f B,‘(N, V) ,c+ U-1) 
I=1 

the B1’ are not functions of V for 1 < L/a, or assuming the box to be cubical, 
I < (N/pa3)lj3. The two conditions I < N (N-P-T) and 1 < (N/pa3)lj3 (N-V-T) are 
qualitatively different because the independent variable P/k,T does not appear 
in the former inequality while the independent variable p does appear in the latter 
inequality. 

Thus if we consider a fluid under high compression in a periodic box with small N 
we would expect the P/kBT expansion in the N-P-T ensemble to be easier to formu- 
late than the p expansion in the N-V-T ensemble. With this in mind we analyze the 
N-P-T equation of state for hard spheres using the method of PadC Approximants. 
The purpose of this analysis is to provide some quantitative information about the 
properties of finite N-P-T systems with the hope that it may be useful in interpreting 
computer experiments performed in the N-P-T ensemble. 

11. A MATRIX FORMULA FOR THE N-V-T VIRIAL COEFFICIENTS 

We start with the product representation of Q(N, V, T), the canonical partition 
function, in terms of the connected cluster integrals bC’, with I between 1 and N [6]. 

Q(N, V, T) = & c’ n 9, 
(mc} L=l * 

(1 = (h2/2mnkBT)112. (II. 1) 

The summation in Eq. (11.1) is carried out over all sets of nonnegative integers 
k%> = 9%) m2 ,..., ml} which satisfy the restrictions 

1 lmz = N. (11.2) 

A decomposition similar to Eq. (11.1) can be obtained for the quantum mechanical 
case and also for many body forces [7], but from here on we shall concern ourselves 
only with classical statistics and pairwise additive forces. This simplification 
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enables us to define unambiguously the condition 

bi’ = bl if I < L/a, (11.3) 

when the system is enclosed by a periodic box. We shall assume that Eq. (11.3) 
holds throughout the remainder of this section. 

Equation (11.1) can be expressed as a determinant [8]: 

QW, K T> 
Vb, -1 0 0 . . . 0 

. . . 1 2Vb, Vb, -2 0 0 
=m . 3 Vb, . 2 Vb, Vh -3 a’. 0 ) 

Ntib, (N - i)Vb,-, (N - $Vb,-, (N - $Vb,-, ..a +b, N 

(11.4) 

which is a new result. 
Expressing Eq. (11.4) in terms of the number density p, we have 

Q(N,V,T)=mdetM,, 

-pN-l 0 0 . . . 0 

b, -2pN-l 0 . . . 0 

2b, b, -3pN-1 . . . 0 . (11.5) 

Nb, (N - ‘l)b,-, (N - $b,-, (N - >)bNm3 ..* b, 

The equation of state may be written as 

P p2 a ln QW, K 0 _ -_-- 
kgT N ( aP 1 T.N 

(11.6) 

where A, represents det MN . 
From matrix algebra, we have 

= Trace [M;;’ . (F)T A, (11.7) 
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where M;l is the inverse of the matrix MN [9]. Since the bl are independent of p, 
we may write 

0 1 0 0 *** 0 

aMN 
0 0 2 0 *.. 0 

( 
aP 

1 
7.N 

0 . 0 . 0 . 3 . ... 0 (11.8) 
. . . . 
b 0 0 0 *** 0 

The virial coefficients are obtained by expanding Eq. (11.7) in powers of p 
(assuming p to be small), the result being 

= P + F2 j-$2)2)! Tr [( 

al-2M--1 

apt-f )o=o* TN] Pz. 
(11.9) 

Equation (11.9) is still in a rather complex form because the inverse of MN 
must be calculated. This problem can be simplified by converting Equation (11.9) 
to a form that contains the inverse of an N x N triangular matrix instead of MN . 
To do this we make use of an identity that may easily be derived through induction. 
If AN is any N x N matrix whose elements are differentiable functions of p, and if 
A;;l exists, then if asAN/ap” = 0, (the null matrix) for s > 1, 

akA-,l _ - - (-l)‘“k! [A$ . m!!!&lk . A;? 
aPk 

(II. 10) 

If we identify A, with MN and set k = I - 2, Bl (I > 1) in Eq. (11.9) becomes 

B,(N) = k!$? Tr[M;‘(O) * TN]‘-l, 

MN(O) = W44 Io=o - (11.11) 

MN(O) is a lower triangular matrix and its inverse can be written explicitly. Using 
b, = 1, we have, for MN(O), 

0 *.. 
0 . . . 
1 . . . 

Nb, (N - ‘l)b,, (N - i)b,-, .a. 

(II.12) 
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and M;(O) is given by [IO] 

10 0 ***o 
P2 1 0 *.*o 
P3 Pa 1 *-* 0 

P4 P3 P2 ... 0 

PN tLN-1 PN-2 *” 1 

2b2 1 0 . . . 0 
3b, 2b, 1 . . . 0 

pi = (-l>j-1 4b, 3b, 2b, ..’ 0 

jbj (j - .l)bi-r (j - i)b+, 1.. 2b2 

Thus M&‘(O) * TN can be written as 

0 

M;l(o) .T, = 
8 

(11.13) 

j-1 

) . (11.14) 

\ 
\o PN 2tLN-l 3pN-2 *‘* W - 1)d N 

The substitution of Eq. (11.14) into Eq. (II.1 1) produces a new formula for 
generating the B,(N) that is well suited for computer calculations. 

III. A MATRIX FORMULA FOR THE N-P-T- VIRIAL COEFFICIENTS 

We begin with Eq. (II.l), collecting all factors of the volume I’: 

Zlm, = N, 

.Zml = m. 

We can write 

QtN, v, 0 = &tN, v, 0 + AQW, K T), 

(III. 1) 

(111.2) 
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where &(N, V, T) is formed from the volume independent integrals bl and 
dQ(N, V, T) contains both the bl and bl’. From Eq. (11.3), we see that 

OQ(N, V, T) = 0 for L > L, = aN 

or v> v,. (111.3) 

The N-P-T partition function may be written as 

Q(N, P, T) = z jm dVecZVQ(N, V, T) + z j yN dVeczv AQ(N, V, T) 
0 

1 1 
=jjii p [ 1 

’ m!zN-m fi @P ’ - + z j,” dve’ & VmF,(@l’l, &I)], I 
Wll 1=1 ml* 

(111.4) 
the primed summations indicating that the two restrictions in Eq. (111.1) are 
imposed [ll]. FN is some algebraic function of the bl’ and the bL and z represents 
the independent variable P/ksT. The exponential function in the last term can be 
expanded to give 

dQ(N, P, T) = & [$ ‘f’ (-‘r+l jYNdV c’ Vm+iFN({bl’}, {b,})]. (111.5) 
j=O 0 tmll 

If we factor out the term z-~ from Eqs. (111.4) and (111.5) we see that the lowest 
power of z occurring in Eq. (111.5) is z N+l while the highest power of z occurring in 
the first term of Eq. (111.4) is zN-l since the minimum value of m is 1. It is not 
difficult to show that if, in the virial expansion 

v -=-- 
N 

1 (alnQ$j~P’T’)N1= ~lC,(N)z’l, 
N 

(111.6) 

we limit ourselves to the consideration of terms up to order zN-l, we avoid the 
complication of the higher order terms due to Eq. (111.5) [12]. Thus the first term 
in Eq. (111.4) gives the correct virial expansion for terms up to order zN-l. In the 
rest of this section we restrict our attention to these terms. 

A new formula for Q(N, P, T) can then be written in the form [8] 

QW, P, 8 = & det P, 

b, -z 0 0 ... 0 
b, b, -z 0 ... 0 
b, b, b, -z ..a 0 
. . . . 

iN b;pl b;v2 b;s3 .** b, 

(111.7) 
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Following the procedure in Section II, the equation of state may be written as 

v 1 1 alnr, 1 -=--- 
N z N ( az 1 N,T = z --$Tr[p-,‘*(~~NT] 

I’, = detP,, (111.8) 

where 

0 I 0 0 ... 0 

( ap, 1 
0 0 1 0 **. 0 

.-* 
aZ 

0 0 0 1 0 (111.9) 
N,T . . . . . . . . 

6 6 6 i) . . . i, 

The virial expansion becomes 

g = x C,(N) zzM2 = k + x Nit)2)! s2 (Tr PG1 * WN) Iam0 z’-~ 

(III. 10) 

We use Eq. (11.10) to simplify Eq. (111.10) so that C1 (1 > 1) in Eq. (111.10) 
becomes 

C,(N) = id&l Tr[P$(O) . WN]‘-l, 

PN(“) = PN(Z) is=0 , (111.11) 

which closely resembles Eq. (11.11). Again taking b, = 1, we have for PN(0) 

10 0 aa.0 
b, 1 0 **. 0 
b3 b, 1 *** 0 . . . . 
dN b;ml b;M2 --. i 
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and P;;l(O) is given by 

10 0 **a0 
22 1 0 se.0 

-*- 

p;l(()) = 1 ;I t2 t3 t, ... 0 ' 
. . 
. . 
. . 

1 :_( 0 

\tN t,-, t,-, .-- I/, 

tj = (-l)i-’ 

Thus P’(O) * W, can be written as 

b, 1 0 *.* 0 ’ 
b, b, 1 *** 0 
6, b, 6, 0 

/ 
a.* . . 

: 
~ . 

. . I 
d, b,, b$‘-:! .** b, ij-l 

(III. 13) 

(III. 14) 

The substitution of Eq. (111.14) into Eq. (III.1 1) gives us a matrix algorithm for 
generating the C,(N). This is also a new result. 

Since most of the numerical results on virial coefficients are presented in terms of 
the irreducible cluster integrals pk (for an infinite system), we express bj in terms 
of the ,& [6]: 

1 knl, = j- 1, 
k=l 

or in determinental form [8]: 

bj= ’ 
j2(j - I)! 

(111.15) 

$4 -1 0 . . . 0 
23, jA -2 . . . 0 
3jP3 2jP2 j/3, .** 0 
4jA 3.iP3 2jj3, 0 . .a. (111.16) 

(j - i>jPj-, (j - hlL2 (j - j)$+, .a* jjl j-1 
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The Bk are defined by [6] 

I% = & /.;I &,2,...,k+l drl ..* drk+l , (111.17) 

where sl~2~....k+l is defined as the sum over all products of Mayer)functions such 
that for a particular product thef-bonds between the labeled points form a labeled 
graph on k + 1 points distinct from any other labeled graph on k + 1 points and 
which has at least two independent paths along?bonds which do not cross at any 
point for each pair of labeled points in the labeled graph. We define the f-function 
by 

j& = exp(-q+JksT) - 1, (111.18) 

where p)i3 is a pair potential. 
The density-virial coefficients for an infinite system, B,(co) (see Eq. (11.9)), are 

related to the fik by 

B,(co) = - y p&1 . (111.19) 

IV. ALGEBRAIC EXPRESSIONS FOR THE VIRIAL COEFFICIENTS 
B,(N) AND C,(N) 

We now recall Wood’s result for B,(N), 1 < I < 5, described by Eq. (11.9) and 
Eq. (II.1 1) in terms of the B,( co) (or simply BJ [l]: 

w9 = 1, 
B,(N) = B, - B&l, 

B,(N) = B, + (2Bz2 - 3BJ N-l + (-2Bz2 + 2B,) N-2, 

B,(N) = B, + (-4B23 + 9B,B, - 6B,) N-l + (16B23 - 27B2B3 + 1 lB,) N-2 

+ (-12B23 + 18B2B3 - 6B.J N-3, 

B,(N) = B5 + (-24B22B3 + 9B,2 + 16B,B, - lOB, + 8B24) N-l 

+ (192B22B3 - 51B,2 - 96B2B4 + 35B, - 80B23 N-2 

+ (-408B22B3 + 90B,2 + 176B2B4 - 5OB, + 192B23 N-3 

+ (240B22B, - 48B,” - 96B2B4 + 24B, - 120B23 N-4. (IV.1) 
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The C,(N) (see Eqs. (111.10) and (III.1 1)) for 1 < 1 < 7, expressed in terms of 
the C,( co) (or simply C,) are given by 

G(N) = 1, 

C,(N) = c, - C,N-1, 

C,(N) = c, + (C2” - 2C,) N-l, 

C,(N) = c, + (-Cg” + 3&C, - 3C,) N-l, 

C,(N) = C, + (C2” + 4C3C4 - 4C3C22 + 2C32 - 4C,) N-l, 

C,(N) = C, + (-C25 + 5C3Cz3 - SC,zC, - 5C4C2 

+ 5C3C4 + 5&C, - 5CJ N-l, 

C,(N) = C, + (Cz6 - 2C3” + 9C2T2 - 6C24C3 + 6CS3Cq - 12C,C3C4 

+ 3C42 - 6C,C22 + 6C2C6 + 6C3C, - 6C,) N-l. (IV.2) 

The C,( co) may be expressed in terms of the more familiar B,( co), the relationship 
being [13] 

C2 = B, > 

C, = B3 - B22, 

C, = B4 - 3B2B3 f 2B23, 

C, = B, - 4B2B4 + 10Bz2B3 - 2Ba2 - 5Bz4, 

c, = B6 - 5&B, - 5B3B4 + 15B2B3= f 15B22B4 - 35B23B3 -j- 14B25, 

C, = B, - 6B,B, -6&B, - 3B42 + 7B32 + 42B2B3B4 + 21B22B, - 84B22B32 

- 56B23B4 + 126B2"B3 - 42B26. (IV.3) 

For hard spheres of diameter 0, 

B, = $ 03, 

WB, = 1, 
B3/B22 = 0.62500, 
B4/B23 = 0.28695, 
B6/B24 = 0.1103 & .0003, 
B6/B25 = 0.0386 & .0004, 
B,/B2s = 0.0138 f .0004 [14], (lV.4) 
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so that 

C,(N)/& = 1 - N-l, 

C,(N)/B,2 = -0.3750 + 1.7500 N-l, 

C,(N)/B23 = 0.41195 - 3.3609 N-l, 

C,(N)/B,4 = (-.56875 f .0003) + (6.7041 f .0012) N-l, 

C6(N)/B25 = (0.8790 f .0019) + (-13.6490 h .OllO) N-l, 

C,(N)/B,B = (-1.4524 f .0102) + (28.1363 & .0751) N-l, (IV.5) 

V. THE PADRE APPROXIMATION TO THE N-P-T EQUATION 
OF STATE FOR HARD SPHERES 

Equation (111.10) may be written in the form 

gT = 1 + z’[C2P2 + (c,/B22)(z’>2 + .-*I 

+ $ [@‘/B2 + (CpQ?22)(z’)2 + a**], (V-1) 

where z’ = B2z, the Cl are the N-P-T virial coefficients for the infinite system 
and CjN’ is the coefficient of N-l in C,(N) (C,(N) = C1 + CiN’N-l). 

We form the PadC approximation to Eq. (V.l) by introducing 

PV -= 
NkBT 

1 + Z’Pyn, m) + z. P(N)(n, m), N 

where the P(n, m) are defined by [15] 

c;=1 cri(Z’)i 
ph m) = 1 + Cbl Y$(Z’)i * 

(V-2) 

(V.3) 

The cu’s and y’s are constants determined by the substitution of Eq. (V.3) into 
Eq. (V.l). For hard spheres, the C,(N) for 2 < 1 < 7 are given by Eq. (IV.5) so 
for this system the cu’s and y’s are uniquely determined for n + m < 7. 

Since we are dealing with a hard core system, it is convenient to introduce the 
close packed volume V,, into Eqs. (V.2) and (V.3), where 

V,, = Nu3/d (V.4) 
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for hard spheres of diameter u. The variable z’ may then be expressed as 

y _ 22/3 = 
3 % 

q~ = PVoINkBT. W.5) 

If we express Eq. (V.2) in terms of y and define the dependent variable 

7 = v/v,, (V.6) 

Eq. (V.2) becomes 

Ty = fpT(yn, m) + 5 T(Nyn, m), (V.7) 

where 
- 

P)(n, m) = cp + * P@)(n, m), 

dN)(n, m) = 9 P(“‘)(n, m) [16]. 

TABLE I 

The Pade Approximants +)(n, m) and G”(n, m) as a function of 
‘p = PV,,/NkBT for hard spheres in an N-P-T ensemble” 

(V.8) 

9 +=)(4,3) 7y3, 4) @)(3,3) T’N’(4, 3) WJ(3,4) +y3, 3) 

SO 4.25 4.25 4.21 -.894 -.898 -204 
.I5 3.43 3.44 3.47 -669 -619 - .692 

1.00 2.99 2.99 3.05 -529 -.549 -.%I 
1.25 2.68 2.70 2.79 - .429 -.461 -.485 
1.50 2.45 2.48 2.61 -.352 -.398 - .426 
2.00 2.12 2.19 2.37 -.235 -.313 -.349 
3.00 1.67 1.82 2.13 - .070 -.220 -.266 

a V, is the close packed volume, P is the pressure, N the number of spheres, ke Boltzmann’s 
constant and T is the absolute temperature. 

Table I gives the T@) and TfN) as a function of v for various n and m. We restrict 
our attention to the cases )2 = m f 1 and n = m, since these produce the most 
consistent results. The stability of the Pade approximation is remarkable con- 
sidering the fact that the CI and CiN’ in Eq. (IV.5) alternate in sign and increase in 
absolute value as I increases. The largest deviation from the arithmetic mean of T@) 

at 9 = 2 is 6.3 ‘A of the mean. 
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A comparison between Table I and the molecular dynamics studies of Alder 
and Wainwright [2] can be made in the region where N is so large that finite N 
effects can be neglected and 7cm)(4, 3), 7cm)(3,4) and 7@)(3, 3) can be taken as 
constant for a given v. For y = 1 JO, Table I gives Pr/NksT = 3.01 while Alder 
and Wainwright give PV/NkBT m 3.05. 

For larger values of v (v > 2) agreement with the molecular dynamics results 
seems to be rather poor when compared with the agreement Ree and Hoover 
oqtained with a PadC treatment of the 6 and 7 term virial series in an WV-T 
formalism [14]. However, the main test of the usefulness of the N-P-T formalism 
will be the comparison of Eqs. (V.7) and (V.8) with the results of computer 
experiments performed directly in the N-P-T ensemble. 
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